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Abstract 

The current paper focused on  Robertson’s and Fryer’s (1969) conditions  

applied to determine  the existence of bimodality in the mixture of normals. 

Best modality test is a pre-requisite to evaluate whether the existing data is  

unimodal or bimodal. On the basis of the same data, the researchers also 

assessed bimodality through modality tests. For this purpose, modality tests 

were compared on the basis of size and power properties designed by Monte 

Carlo simulations. The results showed that all modality tests were of stable 

sizes, that is, around the nominal size of 5% on the basis of simulated critical 

values. In view of power assesment, the Silverman Bandwidth test was 

found to be the best performer test which was also justified by the real data 

examples.  
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Introduction 

In the existing literature, many complexities were found about the modality. 

To address the nature of modality in the data, many tests, based on different 

assumptions and mathematical structures developed in the literature. A few 

of these studies included Hartigan (1985), Muller and Sawitzki (1991), and 

Silverman (1981) based on the null hypothesis of unimodality against the 

alternative of multimodality. Similarly, different studies were carried out to 

evaluate the performance of modality tests keeping in view the different 

objectives.   

Engelman and Hartigan (1969) investigated the nature of bimodality by 

dividing the data into two parts with same means in null hypothesis and with 

the concept to maximize the likelihood ratio, however, most of the times the 

test failed to detect bimodality. Further, the study of Wolfe (1970)  was 

based on the likelihood ratio test which concluded that for unimodal 
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distribution the probability of multi-modes was high and seemed as mixture 

of normals. Silverman (1981) formulated a monotonically decreasing 

function based on k-bandwidth when sample size was persistent. Muller and 

Sawitzki (1991) investigated that in order to determine the k-modes excess, 

Mass test and Hartigan Dip test showed the same results. Similarly, Bianchi 

(1997) applied different modality tests on the DGP data of 119 countries for 

the purpose of inspection and identified k-modes reliably. Contributing 

further, Chen et al. (2001) applied a “Modified Likelihood Ratio Test” to 

evaluate modality in the mixture of different models with the help of various 

parameters. The research concluded that the chances of modality existence 

were only based on the mixture of unimodal distributions rather than the 

mixture of some other components. In this connection, their study also 

introduced a common “Likelihood Ratio Test” for the detection of 

bimodality. Daniel et al. (2008) used Silverman test and Hartigan Dip test 

on various considerable distributions and a multimodal was identified for 

all results after the rectification of asymptotic scales. Arshad et al. (2018) 

compared modality tests on the basis of stringency criteria and concluded 

that Silverman test outperforms other tests, however, its performance at 

large bumps and large sample was not very ideal. Jamal et al. (2020) 

investigated the size performance of four non-parametric modality tests.  It 

was summarized that the Hartigan Dip test has stable size as compared to 

other three tests on the basis of simulated critical values, while proportional 

mass test performs worst. For real data series, Arshad et al. (2019) 

concluded that the Silverman test performs much better as compared to 

other tests to detect whether the given series was multimodal, bimodal or 

unimodal.     

In this connection, the current study  initially applied Robertson’s and 

Fryer’s (1969) conditions on the mixture of normals to determine the 

confirmation of bimodality. Secondly, the study also offered the 

comparison of four modality tests on the distinct case of data where the 

parameter values showed  bimodality. The assessment of tests was based on 

size and power properties through Monte Carlo simulations. To check the 

existence of bimodality for DGP (mixture of normal, that is, N (0, 1) + N 

(𝜇2, 𝜎2
2)), the researchers detected only those values for which the 

parameters showed bimodality and ignored the parameter values which 

represented unimodality.  
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Section 2 explains modality tests used in the current study to make 

comparisons; a methodological framework indicating data generating 

process, simulation design, and bimodality conditions as laid down in 

section 3. Further, section 4 investigates the findings obtained from 

simulation results with respect to size and power of tests along with 

empirically evaluating the simulation results. At the end, section 5 

summarized the results of the study.           

Comparison of Modality Tests 

In the current research, four different tests were used to determine  the 

modality. These tests included Silverman’s Bandwidth test, Hartigan Dip 

test, Proportional Mass Test, and Excess Mass Test. These tests were based 

on the null hypothesis (H0) of unimodality against the alternative hypothesis 

(HA) of bimodality.  

Silverman’s Bandwidth Test or Bump Test 

This test is also called bump test which depends upon Gaussian kernel 

density and a small type of window width of a unimodal distribution.  

This test is applied for at least two modes in the alternate hypothesis. 

Silverman (1981) determined the 𝑘-critical smoothing parameter called 

bandwidth as the least one for ℎ𝑘 of the kernel density estimation with k 

various modes. The testing procedure is given below: 

The sample 𝑥𝑖 which is from kernel density with un-explained density 

function ‘𝑓’as,  

𝑓(𝑥, ℎ) =
1

𝑛ℎ
∑ k𝑛

𝑖=1 (
xi− x

ℎ
)  

Smoothing parameter,  which stands equal to ‘ℎ’ and ‘k’ is the function 

of Gaussian kernel. Silverman noticed that as ‘ℎ’ becomes large,  the 

amount of modes in 𝑓(𝑥, ℎ) decreases. The test statistic of bump test is 

given below;  

ℎ̂𝑐𝑟𝑖𝑡  = inf {ℎ : 𝑓(𝑥, ℎ)has single mode} 

The least smoothing parameter ℎ̂𝑐𝑟𝑖𝑡
1  is vital for one mode and their 

probability �̂� as; 

�̂� = P(ℎ̂𝑐𝑟𝑖𝑡
1∗ ≥ ℎ̂𝑐𝑟𝑖𝑡

1 ) 
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When �̂� becomes minimum it ultimately determines significant results 

for this test. This technique starts from one mode and continues up till the 

test is ineffective to reject H0 of ‘𝑘’ modes.        

Hartigan Dip Test 

Dip test was designed by Hartigan (1985) which found the presence of 

bigger difference between the data distribution and specific theoretical 

distribution of one mode in the data. Let 𝑓(𝑥) is density function with ‘K’ 

modes; the Cumulative Distribution Function 𝐹(𝑥) is curved outside under 

‘K’ and curved inside above ‘K’.  

Also 𝐹 is the distribution function and 𝐷(𝐹) = 𝑑 for non-reducing 

functions ‘G’. However,𝑋𝐿 ≤ 𝑋𝑈, G is the highly outwards curved minorant 

of (𝐹 +  𝑑) in limit (−∞, 𝑋𝐿), now in variable, G has  a variable of much 

higher gradient of (𝑋𝐿, 𝑋𝑢), G is a very small quantity of inwards curved 

majorant of (𝐹 −  𝑑) in (𝑋𝐿, ∞), so the procedure as follows as;  

(i) In the beginning let 𝑋𝐿=𝑋𝐼, 𝑋𝑢=𝑋𝑛, D = 0.   

(ii) Find the Greatest Convex (outwards curved) Minorant ‘g.c.m’ G and 

Least Concave (inwards curved) Majorant ‘l.c.m’ L for F in [𝑋𝐿, 𝑋𝑢], 

consider the values concerning with F are correspondingly 𝑔1, 𝑔2, . . . . 

. , 𝑔𝑘 and 𝑙1, 𝑙2, . . . . . , 𝑙𝑚 

(iii)To take 𝑑 = sup│G(𝑔𝑖)− L(𝑔𝑖)│> sup│G(𝑙𝑖)− L(𝑙𝑖)│ and also the Sup 

exists at 𝑙𝑖 ≤ 𝑔𝑖 ≤ 𝑙𝑗+1 explain  as 𝑥𝑖
0= 𝑔𝑖 , 𝑥𝑢

0= 𝑙𝑗+1 also. 

(iv) Taking 𝑑 = sup│G(𝑙𝑖)− L(𝑙𝑖)│≥ sup│G(𝑔𝑖)− L(𝑔𝑖)│ and also the Sup 

exists at 𝑔𝑖 ≤ 𝑙𝑖 ≤ 𝑔𝑖+1explain as 𝑥𝑖
0  = 𝑔𝑖 , 𝑥𝑢

0  = 𝑙𝑗. 

(v) When 𝑑 ≤  𝐷, finish and put 𝐷(𝐹) = 𝐷 

(vi) When 𝑑 > 𝐷,  

put 𝐷 =sup{𝐷, 𝑠𝑢𝑝𝑥𝑙≤ x ≤𝑥𝑙
0│𝐺(𝑥) −  𝐹(𝑥)│, 𝑠𝑢𝑝𝑥𝑢

0≤x ≤𝑥𝑢
│𝐿(𝑥) −

 𝐹(𝑥)│}  

(vii) Place 𝑥𝑢
0  =𝑥u, 𝑥𝑙

0=𝑥𝑙 and go back to (ii).  

This study used the same method of Hartigan Dip test for any data series 

and calculated their size and power for comparison with other modality 

tests.  
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Proportional Mass Test 

Cavallo and Ringobon (2011) examined modality in the region for a 

special value which was approximately zero at both sides. The Proportional 

Mass (PM) test determined the mass of values, changes in the absolute value 

less than 1%, 2.5%, and 5%. PM test was based on the central tendency 

point (that is,  0%, mode and mean) of the distribution.  

PM test determined the magnitude of unimodality on each sides of the 

center value which observed the density mass between the boundaries. The 

mass of the interval (−1%, 1%) was found to be higher than the interval 

(−5%, 5%).  

 P (|∆p| ≤ 1) ≥ P (|∆p| ≤ 5)/5   

Proportional mass for i= 1 and j= 5 then; 

𝑃𝑀1,5
0  = ln(P (|∆p| ≤ 1))/( P (|∆p| ≤ 5) /5) 

Proportional mass on both sides of zero as;  

𝑃𝑀0= 
1

|z| 
∑ 𝑃𝑀𝑖𝑗𝑖𝑗∈𝑧  

‘Z’ is the set of the combinations of i< j and testing for unimodality on 

two sides of mode denoted by ‘m’ as;  

 𝑃𝑀𝑚= 
1

|z| 
∑ ln

  P (|∆p−m| ≤ i)

 P (|∆p−m| ≤ j/(j /i)𝑖𝑗∈𝑧  

For positive value of 𝑃𝑀𝑚 the results showed that the distribution was 

unimodal and for negative value the distribution was bimodal.  

Excess Mass Test 

This test was introduced by Muller and Sawitzki (1991) for 

multimodality and cluster which remained same to Hartigan Dip test when 

used for ‘m’ modes. Excess Mass ‘EM’ test found the ordinary difference 

of a related distribution to accessible modal, as often uniform distribution.  

They considered a distribution function ‘F’ with sampling density ‘f’. 

The empirical distribution function was 𝐹 ̂and ‘n’ was the sample size 

drawn from ‘F’. Mathematically EM test procedure is as, 

𝐸𝑛𝑚(λ) = 𝑆𝑢𝑝c1,...,cn
[∑ (𝐹 ̂(𝐶) −  λ‖𝐶𝑗‖𝑚

𝑗=1 )] 
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As λ≥ 0, the selection of supremum from the set denoted 

{𝐶1, 𝐶2, ……… , Cm} of disjoint values. The function 𝐹 ̂(𝐶) is equal to 𝐹 ̂ 
size of C and magnitude ‖𝐶𝑘‖ denoted the length of C.  

Dnm (λ) = Enm (λ)− En.m-1(λ) ≥ 0 

Where 𝐻0 has sampling density ‘𝑓’ with (𝑚 − 1) modes and 𝐻1has ‘𝑚’ 

modes. The test statistics are as,  

∆nm = Supλ>0 {Dnm (λ)}  

For large value of ∆nm in most cases this test has significant decision. 

They also introduced empirical procedures for quantity and described the 

ideas of higher ∆nm, which emphasized that mode ‘𝑚=1’.  

Methodology 

Data Generating Process 

In the current study, Data Generating Process (DGP) was used to assess 

the presence of bimodality with a mixture of two normal distributions (that 

is, combination of one normal and second one is standard normal 

distribution). Bimodality conditions and modality tests were applied on the 

DGP in order to detect the bimodality. The detail of the DGP is explained 

as: 

Here 𝑋1 was the selected sample from the first normal population 

having location and the scale parameters mean 𝜇1 and variance 𝜎1
2 and 𝑋2 

was another sample from the second normal population having parameters 

𝜇2and 𝜎2
2. 

M= {𝑋1 with mixing proportion denoted by 𝑝, 𝑋2 with mixing proportion 

denoted by (1−𝑝)}  

and, can be written as;            

M = 𝑝𝑋1 + (1−𝑝) 𝑋2                                                                                  (1) 

Where “M” denotes a mixture of two normals or also called bimodal 

distribution and “𝑝” denoted the mixing probability/proportion within 

interval (0, 1).   

Simulation Design for Modality Tests 

The current study  used  the methodology of Monte Carlo simulation 

design used to determine the four modality tests. The procedure of this 
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simulation design was to find the size and power. These procedures are 

explained in the following steps:   

(i) The DGP in eq. [1] is used to generate the data. 

(ii) All the selected modality tests were applied on the same DGP.  

(iii)Considering 5% level of significance fixed for Monte Carlo sample size 

“MCSS”= 5000, then size of the test was calculated as: 

Size = Probability (Reject 𝐻0/ 𝐻0 is true) 

Mathematically,  

Size of the test =
significant count

MCSS
× 100 

“𝐻0” for these modality tests consists of any unimodal distribution, (that 

is, normal, Chi-square, uniform etc.) and “𝐻𝐴” contains the DGP.  

(iv) Similarly, at 5% level of significance, the power of the modality tests 

was calculated as: 

Power = Probability (Reject 𝐻0/𝐻0is false) 

Mathematically, 

Power of the test= 
Number of rejections out of MCSS

MCSS
ˣ 100 

Bimodality Conditions 

The current study used Robertson and Fryer’s (1969) conditions with 

two variables as 𝑋1~ N(𝜇1, 𝜎1
2), and 𝑋2~ N(𝜇2, 𝜎2

2). The mixture “M” 

depends on the ratios of parameters, that is, 𝑝,  𝜇 = 
(𝝁𝟐− 𝝁𝟏)

𝝈𝟏
, and 𝜎 = 

𝝈𝟐

𝝈𝟏
 which 

could be further simplified as 𝜇= 𝜇2 and 𝜎= 𝜎2 due to 𝜇1= 0, 𝜎1
2= 1.The 

parameter values in Robertson and Fryer’s (1969) conditions  are given as 

follows: 

(i) “M” is called unimodal distribution if  0 < 𝜇 ≤ 𝜇0 , where  

𝜇0= {
𝟐(𝝈𝟒−𝝈𝟐+𝟏)

𝟑
𝟐−(𝟐𝝈𝟔−𝟑𝝈𝟒−𝟑𝝈𝟐+𝟐)

𝝈𝟐 }

𝟏

𝟐

 

(ii) If 𝜇 > 𝜇0 then “M” is called a bimodal distribution also when “𝑝” lies 

in the interval (𝑝1, 𝑝2) as 𝑝1 < 𝑝 < 𝑝2. 

 (𝜎2 − 1)𝑌𝑙
3 −  𝜇(𝜎2 − 2)𝑌𝑙

2 −  𝜇2𝑌𝑙 +  𝜇𝜎2 = 0                                       (2) 
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Where 

𝑝𝑙
−1 = 1+

𝜎3

𝜇− 𝑌𝑙
exp{−

1

2
𝑌𝑙

2 + 
1

2
(

𝑌𝑙− 𝜇

𝜎
)

2

} for l= (1, 2). 

𝑝1= [1 +  
𝜎3

𝜇− 𝑌1
exp {−

1

2
𝑌1

2 +  
1

2
(

𝑌1−𝜇

𝜎
)

2

}]
−1

 

𝑝2 = [1 + 
𝜎3

𝜇− 𝑌2
exp {−

1

2
𝑌2

2 +  
1

2
(

𝑌2−𝜇

𝜎
)

2

}]
−1

 

Where 𝑌1 and 𝑌2 are the two roots of eqn [2], with 0< 𝑌1 < 𝑌2 < 𝜇, 

otherwise “M” is unimodal distribution. 

(iii)If 𝜇 ≤ 2 times minimum of (1, 𝜎), “M” is unimodal distribution. 

Otherwise 𝜇 ≥
3√3

2
 time minimum of “M” is bimodal distribution 

for 𝑝1 < 𝑝 < 𝑝2. 

It is necessary to get two of the three real roots of (𝑌1, 𝑌2, 𝑌3) of the ‘𝑌𝑡ℎ’ 

cubical eqn (2) and diminishing the complex and negative roots due to the 

conditions restrictions 0< 𝑌1 < 𝑌2 < 𝜇 and set “𝑝1 < 𝑝 < 𝑝2”. However, 

the researchers calculated the parameters “𝑝, 𝜇2, and 𝜎2” values for which 

the distribution showed bimodality.  

After the formatting of this procedure the researchers considered 

various values of the parameters from the DGP. Looking forward to these 

parameters values, the current study conducted Monte-Carlo simulations for 

modality tests and made the assessment based on size and power properties.  

Application of Bimodality Conditions 

In this section, Robertson and Fryerˈs (1969) conditions were applied 

on “DGP” to verify the bimodality existence. As the DGP of this study 

utilized one standard normal and second one normal distribution so, 𝜇1= 0, 

𝜎1
2= 1, and varying the values of the remaining parameters (𝑝, 𝜇2, 𝜎2

2), that 

is, 𝑝 = (0.1, 0.2, 0.3,. . . . . . ., 0.9), 𝜇2= (1, 2, 3, . . . . . . ,10), and 𝜎2
2 = (0.1, 

0.2, 0.3, . . . . . . . , 0.9). To change the values of these parameters (that is, 

𝑝, 𝜇2, 𝜎2
2) the sample results are shown in the table given below where “1” 

stands for unimodality while “2” stands for bimodality. 
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Table 1 

Existence of Bimodality Result with the Varying of Parameters in DGP   

𝜇2 Result where 𝑝= 0.1, 𝜎2= 0.6 𝜇2 Result where 𝑝= 0.1, 𝜎2= 0.6 

1 1 6 1 

2 2 7 1 

3 2 8 1 

4 2 9 1 

5 1 10 1 

The Table 1 above describes the bimodality conditions results where 𝜇2 

was measured to be 2, 3, and 4 whereas, 𝑝= 0.1 and 𝜎2
2= 0.6.  The DGP was 

shown to be a bimodal distribution, while for remaining values the DGP 

remained a unimodal distribution. Similarly, by continuing this process, the 

researchers obtained the significant conclusions. The results of the DGP are 

shown in the Table 2 given below, 

Table 2  

Important Result of the Mixture of Two Normals 

When N(0, 1)+ N(𝜇2, 𝜎2) N(𝜇1, 𝜎1)+ N(𝜇2, 𝜎2) Results 

𝜎2 < 𝜎1 real and –ve Real ±ve 1, 2 

𝜎2 > 𝜎1 Complex Complex     2  always 

When 𝜎2 < 𝜎1 in DGP then eqn (2) gives negative real roots and 

identified that the distribution was either unimodal or bimodal. However, 

when 𝜎2 > 𝜎1, then the eqn (2) gives complex roots which means that the 

DGP was unimodal.  

When 𝜎2 < 𝜎1 in a mixture of two normals (that is, N (𝜇1, 𝜎1
2) + N(𝜇2, 

𝜎2
2)) then eqn (2) provided both types of real roots (positive and negative) 

and detected that the subsequent distribution was either unimodal or 

bimodal. However, when 𝜎2 > 𝜎1 then eqn (2) provided complex roots and 

it was concluded that the distribution was unimodal. The current study 

summarized the overall parameter values which help to display bimodality 

in the following Table 3. 
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Table 3 

Summary of Parameters Values for Bimodality 
𝜇2, 𝑝, 𝜎2 

1, 0.1- 0.6, 

0.2 

2-3, 0.1- 0.4, 

0.5 

2- 9, 0.1- 

0.2,0.7 
3- 4, 0.6, 0.7 

2- 10, 0.1- 0.4, 

0.9 

1, 0.1- 0.9, 

0.3 

2, 0.5- 0.7, 0.5- 

0.6 
2-7, 0.3, 0.7 

2- 10, 0.1- 0.6, 

0.8 

3- 10, 0.5- 0.8, 

0.9 

1, 0.5- 0.9, 

0.4 

2- 3, 0.3- 0.4, 

0.6 
2- 6, 0.4, 0.7 

3- 10, 0.7- 0.8, 

0.8 
4- 10, 0.9, 0.9 

1- 2,0.1- 0.4, 

0.4 

2- 4,0.1- 0.2, 

0.6 
2- 5, 0.5, 0.7 5- 10, 0.9, 0.8  

Note. In each cell, first value indicates μ2, second value indicates p, and 

third value indicates σ2. 0.1- 0.6 shows the range (0.1, 0.2, 0.3, ....., 0.6) 

all other range values can be read in a similar way.   

Table 3 indicates the combination of the parameters values, 

whichprovide the results of the bimodality in DGP to eliminate the other 

values of the parameters which results for unimodality. These values of the 

parameters were further used to make bimodal distribution and modality 

tests to be compared for size and power behaviors.  

Results and Discussion 

Simulation-Based Comparison of Modality Tests 

A Monte Carlo based simulation experiment and empirical comparison 

of the modality tests was carried out in this section. To perform simulations, 

various sample sizes (that is, n = 60, 120, 220, 350) and Monte Carlo 

simulation size of 5000 was considered for all tests. Similarly, exchange 

rates of various countries were considered to empirically evaluate the 

performance of tests.    

Size of the Modality Tests 

In order to test the hypothesis, the null hypothesis (H0) of unimodality, 

while the alternate hypothesis (HA) based on bimodality was formulated. 

The stable size of all modality tests was  calculated through simulated 

critical values with sample sizes around the nominal size of 5%. 

Figure 1 represents the Monte Carlo simulation results of the size of four 

modality tests with several values of ‘n’. When the sample size is small (n= 

60), size of all modality tests also varies around 5% of the ominal size with 

least size of 4.5% for PM test, while being the highest size of 5.3% for Dip 
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test. At sample size n= 120, Dip test exhibits the smallest size (4.6%), while 

PM test shows the highest size of 5.8%. As the sample size increases from 

120 to 220, all four modality tests represent size between 4.5% to 5.5% 

which are stable theoretically. For the sample size 350, the smallest size 

(3.7%) was detected corresponding to the Dip test, while PM test had the 

highest size of 4.4%. Overall, Figure 1 states that all four modality tests 

have stable sizes around the size of 5%, when decision regarding critical 

region was taken on the basis of simulated critical values.  

Figure 1 

Size of the Modality Tests 

Power Based Comparison of Modality Tests 

This section comparesd the modality tests on the basis of power 

property with the same sample sizes as has been used to calculate the size 

in the previous section. Figure 2 to Figure 9 illustrates the power of modality 

tests with numerous parametric values. 

Figure 2 shows the power of four modality tests with parameter values 

𝜇2= 1, 𝑝= 0.6 and 𝜎2= 0.2. At n= 60, all modality tests have power in between 

2.4% to 11.6%, in which PM test has the minimum power of 2.4%. While 

SB test has 11.6% power and was recognized to be as the most powerful 

test at small sample size for 𝜇2= 1, 𝑝= 0.6, and 𝜎2= 0.2. At n= 120, Dip, EM, 

and SB tests retained the identical power pattern as has been identified at 
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n= 60, while power of PM test increased slightly. Furthermore, as the 

sample size increases, PM test outperforms other tests due to its rapidly 

increasing power. However, in the remaining three modality tests the SB 

test has the maximum power as compared to the other two tests at n= 220 

and 350. Overall, Figure 2 determines that as the sample size increases, PM 

test was observed to be as the best performer test with SB test as next best 

performer test.  

Further, a similar picture was observed when 𝜇2 and 𝜎2 took the same 

values as were taken for Figure 2, while the value of p varied (𝑝 =0.1, 0.2, 

0.3, . . . . , 0.6). Similarly, when 𝜇2 = 1, 𝜎2 =  0.4, and 𝑝= 0.5, 0.6, . . . ., 0.9 

power results were observed to be nearly equal as observed in Figure 2.   

Figure 2 

Modality Tests with Power and Parameters (𝜇2= 1, 𝑝= 0.6, 𝜎2= 0.2) 

 

Figure 3 displays the power of modality tests with various parameters, 

that is, 𝜇2= 1, 𝑝= 0.8 and, 𝜎2= 0.3. At n= 60 all modality tests gain small 

power from 2.9% (PM test) to 12.6% (SB test) and were documented as the 

worst and better performer tests. However, as the sample size increases, PM 

test outperforms other tests having 54.3%, 60%, and 99% corresponding to 

n=120, 220 350. Overall, Figure 3 concludes that the PM test was identified 

as the better performer test, while with small power pattern, Dip and SB 

tests were recognized as the worst performer tests. In the same way, with 

the same values of 𝜇2 and 𝜎2 , but varying the values of p (p=0.5, 0.6, 0.7, 

0.9), all tests showed same results according to Figure 3.  
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Figure 3 

Modality Tests with Power and Parameters (𝜇2= 1, 𝑝= 0.8, 𝜎2= 0.3) 

 

Figure 4 

 Modality Tests with Power and Parameters (𝜇2= 9, 𝑝= 0.2, 𝜎2= 0.7) 

 

Figure 4 shows the power of modality tests when 𝜇2= 9, 𝑝= 0.2 and, 𝜎2= 

0.7. At n= 60, Dip with 80.1%, SB with 98.5%, and EM with 83.7% powers 

outperforms PM test with 6.7% gained power  In this situation, SB test was 

identified to be the best performer test as the small size gets larger. While 

PM test increased a little in its power pattern and was recognized as the 

worst performer test. Furthermore, Dip and EM tests with same power 
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behavior over all samples were marked as mediocre performers.  Similar 

results would be obtained if 𝑝= 0.2, 𝜎2= 0.7 are fixed and, 𝜇2= 7 or 8.    

Figure 5 illustrates the power behaviour of modality tests when 𝜇2= 1, 

𝑝= 0.6, and 𝜎2= 0.2. At small sample (n=60), Dip, EM, and SB tests have 

achieved almost same power close to 98%, while PM tests has the lowest 

power 43.8%. As the sample size increases Dip, EM, and SB tests achieved 

maximum power of 100%. While PM test also gained maximum power of 

100%, as the sample size increased (that is, greater than n=120). Overall, 

Figure 5 determines that for small sample size PM test was found as the 

worse performer, while as the sample size increased all four modality tests 

achieved maximum power. Similarly, if 𝑝 =0.5 and the values of other 

parameters remain fixed, then the results would also remain the same. 

Figure 5 

Modality Tests with Power And Parameters (𝜇2 = 6, 𝑝= 0.4, 𝜎2= 0.7) 

 

Figure 6 depicts the power of modality tests when 𝜇2= 8, 𝑝= 0.3, and 

𝜎2= 0.8. At n= 60, Dip, EM, and SB tests have obtained the maximum 

power around 92%-96.6%, while the PM test  achieved minimum power 

(that is, 55.5%). At n= 120, again Dip, EM, and SB tests took maximum 

power (that is, 98%), while the power of EM test reached up to 72.4%. 

Furthermore, at large sample sizes Dip, EM, and SB tests gained maximum 

power of 100%, while PM test gained 97% of its maximum power. 

Similarly, if 𝑝 and 𝜎2 values are kept fixed and 𝜇2 takes the values of 7 or 
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9, the results would remain approximately unchanged.  The results would 

also remain the same  when 𝑝 = 0.7, 𝜎2 = 0.8, and 𝜇2= 5, 6, 7, 8, 9.  

Figure 6 

Modality Tests with Power And Parameters (𝜇2 = 8, 𝑝= 0.3, 𝜎2= 0.8)   

   

Figure 7 

Modality Tests with Power And Parameters (𝜇2 = 7, 𝑝= 0.9, 𝜎2= 0.8)   

 

    Figure 7 shows power pattern when 𝜇2= 10, 𝑝= 0.7, and 𝜎2= 0.8 in DGP. 

At n= 60, three of the modality tests (that is, Dip, PM and EM) have 
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minimum powers between 10.7% and 15%, while SB test was detected as 

the better performer with maximum power of 97.5%. When the sample size 

increased to n= 120, the power of Dip, EM, and PM tests improved with 

PM test as the much better power gainer. As the sample size increased the 

power pattern of all tests further improved and Dip and EM tests with same 

power pattern gained maximum power of 94%. At n= 350, Figure 7 shows 

that the SB test sustained its supremacy with the highest power of 100%, 

while power of the remaining three tests also rose, that is, PM with 63%, 

Dip and EM with 94% individually. Figure 7 concludes that SB test was the 

best performer test as compared to the other three modality tests, while PM 

was the worst performer test. Similarly, the results of Figure 7 persist and 

remain the same, while keeping 𝑝= 0.9, 𝜎2= 0.8, and 𝜇2=8, 9, 10. The results 

also remained same when 𝑝= 0.9, 𝜎2= 0.9 are constant, and 𝜇2= 7, 8, 9. 

Figure 8 

Modality Tests with Power And Parameters (𝜇2 = 10, 𝑝= 0.2, 𝜎2= 0.9) 

 

Figure 8 describes the power of modality tests when 𝜇2= 10, 𝑝= 0.2, and 

𝜎2= 0.9. When n= 60, Dip, EM, and SB with 84.7%, 86.1%, and 95.4% 

have the maximum power attainment, while PM test showed minimum 

power (that is, 19.3%). As the sample size increased, SB test outperformed 

other tests and was recognized as the better performer, while PM test was 

identified as the worst performer with lowest power. Also, it was detected 

that Dip and EM tests maintain equal pattern of their power attainment at 
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each sample size. Further, if 𝜇2=8 or 9, 𝑝= 0.2 and 𝜎2= 0.7 then the results 

remain the same as obtained from Figure 8. 

Figure 9 displays power behaviour of modality tests when 𝜇2= 7, 𝑝= 0.6, 

and 𝜎2= 0.9. At n= 60, Dip, EM, and SB tests have attained high power near 

98%, while PM test has the lowest power. As “n” increased to 120 then Dip, 

EM, and SB tests showed almost the same power pattern and a power gain 

of PM test  also increased and reached to 52.8%. At n= 220 and n= 350, 

Figure 9 shows that all the tests have same power attainment and achieved 

the maximum power that is 100%. Overall, Figure 9 shows that SB test was 

the best performer, while at a small sample size PM test was identified as 

the worst performer among all tests. In the same way, if 𝑝= 0.6 and 𝜎2 =
0.9 are kept fixed and 𝜇2 =5, 6, 8, 9 or 10 then the results would remain the 

same as obtained from Figure 9. 

Figure 9 

Modality Tests with Power And Parameters (𝜇2 = 7, 𝑝= 0.6, 𝜎2= 0.9) 

  

Overall,  keeping in view Figure 2 to Figure 9, it is concluded that SB 

test performs much better as compared to other tests with respect to power 

attainment at all specifications. Dip and EM were identified as average 

performer tests, while PM test as worst performer at all specifications 

excluding first two situations.  
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To evaluate the performance of modality tests on real data, annual 

exchange rates (ER) of Canada, Chile, Colombia, Denmark, Iceland, and 

Indonesia from year 1976 to 2018 were taken from International Financial 

Statistics (IFS). Figure 10 shows the density shape of exchange rates which 

clearly indicates different natures of modality. 

Figure 10 

Density of Various Exchange Rates 

 

Table 4 shows results of various tests describing whether to accept 

unimodality or multimodality based on simulated critical values (SCV) to 

make a decision.  
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Table 4 

Modality Tests Results of Various Countries Exchange Rate 

Country 

Silverman Test Dip Test 

SCV 
Calculated 

value 
Decision SCV 

Calculated 

value 
Decision 

Canada 0.553 0.4809 1 0.1301 0.0426 1 

Chile 0.1263 0.1411 2 0.0741 0.1051 2 

Colombia 0.0102 0.0234 2 0.0956 0.0716 1 

Denmark 0.0041 0.0028 1 0.2194 0.0304 1 

Iceland 0.5729 0.6309 2 0.7362 0.0548 1 

Indonesia 0.0002 0.0006 2 0.0461 0.098 2 

Country 

Excess Mass Test Proportional Mass Test 

SCV 
Calculated 

value 
Decision SCV 

Calculated 

value 
Decision 

Canada 0.0924 0.0853 1 0.9803 0.9357 1 

Chile 0.1673 0.2103 2 0.9163 0.8026 1 

Colombia 0.1154 0.1433 2 0.5361 0.6109 1 

Denmark 0.2057 0.0608 1 0.4513 -0.2614 1 

Iceland 0.2461 0.1096 1 1.4725 1.073 1 

Indonesia 0.1251 0.1059 1 1.0263 1.073 2 

ER of Canada and Denmark showed unimodal pattern on the basis of 

results, as the calculated value was greater than the SCV, obtained from all 

modality tests. This result matches  with the graphical representation of ERs 

corresponding to both of the countries. Chile ER was identified as bimodal 

according to Silverman, Dip, and Excess Mass tests. However, in view of 

proportional mass test it was observed to be unimodal. In view of Figure 10 

Silverman, Dip, and Excess Mass tests have identified the true nature of 

modality, while proportional mass test was unable to detect the true pattern 

of Chile ER series. In case of Colombia, Silverman and Excess Mass tests 

detected ER as bimodal, while Hartigan Dip and Proportional Mass tests 

showed a unimodal identification of ER series. However, the actual shape 

of  density spotted in Figure 10 shows that ER of Colombia was bimodal 

which justified the results of Silverman and Excess Mass tests. For Iceland, 

all modality tests showed that the ER series was unimodal, however, 

Silverman test described that the series was bimodal. In actual case the 

density of this series looked bimodal which further clarified how well 
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Silverman test captures the true nature of ER series. In the last row of Table 

4, results of Indonesian ER are displayed where all the tests  identified ER 

series as bimodal, while Excess Mass test results showed that the series was 

unimodal and corresponding to the density of Figure 10.  

Overall results showed that the Silverman test is an appropriate test and 

performs better as compared to other tests to identify the true nature of 

modality of the data. These results were parallel to the results obtained from 

simulation study.  

Conclusion 

The current study used Robertson’s and Fryer’s (1969) conditions for the 

identification of bimodality. The DGP consisted of the mixture of one 

standard normal 𝑋1~N (0, 1) and second normal distribution 𝑋2~N(𝜇2, 𝜎2
2) 

with mixing probability “𝑝”. 

Section (3.1) revealed some important consequences. Firstly, it stated 

that if 𝜎2 < 𝜎1 in the mixture of normals (one standard and other normal), 

then eqn [2] provides negative real roots and the distributions were 

identified as unimodal or bimodal. In the second case, if 𝜎2 > 𝜎1 then the 

same eqn [2] determines complex roots and all the remaining results 

confirmed the unimodality.  

If 𝜎2 < 𝜎1 in a mixture of two normal, then eqn [2] provides two real 

roots (that is, positive and negative) which means that the distribution is 

unimodal or bimodal. Again if 𝜎2 > 𝜎1,  then eqn [2] determines the 

complex roots and signals  unimodality. Table 4 shows those values of the 

mixture parameters which display bimodality. Using the same parameter 

values, the current study calculated the size and power of four modality 

tests. Under simulated critical values, the size of all modality tests were 

stable, that is, they were around the nominal size of 5%.  

In power assessment, possessing the mean constant (that is, 𝜇2= 1) and 

the values of the remaining two parameters led to an increase in the DGP. 

Therefore, the PM test was found to be the best performing test with high 

power. However, when the mean  increases along with the various values 

of the two remaining parameters excluding PM test (which has minimum 

power),  all modality tests performs well. For additional variations in these 

parameters, the SB test showed high power which indicates that the SB test 

was the most robust and powerful test, while the PM test was observed as 
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the worst performing test. Empirical evaluation of modality tests further 

clarified that the Silverman test outperformed other tests to capture the true 

nature of the modality of ER series.  

In future research, the assessment of bimodality tests would be done on 

the basis of mixture of other distributions in the same framework.    
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