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Editorial 

The Journey from Entropy to Generalized Maximum 

Entropy  

Amjad D. Al-Nasser
1
 

https://doi.org/10.29145/2019/jqm/030101 

1. Introduction 

Currently we are witnessing the revaluation of huge data recourses that 

should be analyzed carefully to draw the right decisions about the 

world problems. Such big data are statistically risky since we know that 

the data are combination of (useful) signals and (useless) noise, which 

considered as unorganized facts that need to be filtered and processed. 

Using the signals only and discarding the noise means that the data 

restructured and reorganized to be useful and it is called information. 

So for any data set, we need only the information. In context of 

information theory, the entropy is used as a statistical measure to 

quantify the maximum amount of information in a random event. 

Therefore, entropy is a very important measure to study the lack of 

knowledge and quantify the randomness in a data. Thermodynamically, 

entropy measures the amount of energy lost when doing useful work. 

Moreover, in our real life it can be used to measure the degree of 

organized lives, such that high entropy value means highly unorganized 

person.  

The entropy measure passed through three stages; started in 

1870 when Boltzmann proposed the entropy as a measure of 

information to define the thermodynamic state of a physical system. In 

1948, the mathematical theory of the entropy measure is provided by 

Shannon. He used the entropy measure concept to measure the 

uncertainty of a message that contains a noise and then to measure the 

amount of information. In 1957, Jaynes proposed the maximum 

entropy (ME) principle as a new estimation tool in statistical 

inference. In 1968, Jaynes used the ME principle as a tool in 

probability theory for solving ill-posed problems by finding the optimal 

probability distribution of a random variable subject to data constraints.  
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Over the years, the use of the maximum entropy formalism 

accelerated faster, and entered many branches of sciences (Mead & 

Papanicolaou, 1984; Zellner & Highfield, 1988; Csiszar, 1991; Press, 

1996). Since the 1990’s many efforts have been made to integrate the 

ME method. In 1996, Golan, Judge Miller proposed the idea of the 

generalized maximum entropy (GME) as a new estimation method 

for fitting the general linear models. Unlike the ME, the GME approach 

idea is to solve any mathematical system even if it is not in probability 

form (Golan and Ullah, 2017; Al-Nasser, 2005; Ciavolino, Carpita 

&Al-Nasser, 2015). In the general linear models, this can be done by 

reparametrizing the unknown model coefficients as well as the additive 

error terms in expected value of a discrete random variable form, then 

solving a mathematical programming problem using the joint entropies 

as an objective function subject to the data model (Golan, Judge & 

Perloff, 1997; Golan & Gzyl, 2012; Ciavolino & Al-Nasser, 2009; 

Ciavolino & Al-Nasser, 2010; Al-Nasser, 2011; Al-Nasser, 2012; Al-

Rawwash & Al-Nasser, 2013 and Al-Nasser, 2014). 

2. Entropy Stage 

The mathematical entropy measure formula as defined by Shannon 

(1948) can be defined as a negative average of the logarithm of a 

probability density (mass) function which is called the amount of self-

information for a given event. For a discrete event; say 𝑦 =
{𝑦1, 𝑦2, … , 𝑦𝑘} with probabilities P = {p1,p2,…,pk}, then the entropy 

measure is  


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where 0ln(0) = 0. In terms of statistical experiments, in 1962; E. T 

Jayens credits Graham Wallis with the experiment (Jaynes, 2003) 

derived a measure of entropy using multinomial experiment. He 

defined the probability of success as Ki
N

n
p i

i ,...,2,1,  , where K is 

the number of all possible outcomes within each trail, ni is number of 

times that the i
th
 event occurs among the N trials, and Nn

i

i  is the 

total number of all trails. Accordingly, the multinomial coefficient of 

this experiment can be defined as 
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When N becomes large, one can use Striling’s approximation to 

simplify this function, and show that 
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which gives the same Shannon’s entropy measure which concerns in 

quantifying the amount of uncertainty using consistent measure.  

3. Maximum Entropy Stage 

Jaynes (1968) proposed the Maximum Entropy (ME) principle as a 

mathematical programming problem in which the objective function is 

the entropy measure and the constraints are derived from the data in 

terms of moments of a probability density (mass) function. The main 

idea behind the ME is to find the optimal probability distribution 

containing the largest amount of uncertainty subject to its constraints. 

ME optimisation problem is given in figure 1, which can be considered 

as a non-linear programming system that used to determine the optimal 

probability distribution.   

 
Figure 1: Maximum Entropy Optimization Problem 

 

where ∑ 𝑓𝑡(𝑥𝑖)
𝑘
𝑖=1 𝑝𝑖 = 𝑦𝑡 is the t

th
 moment constraints.  
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The entropy measure for a continuous random variable is 

defined with exchanging the summation symbol by the integral symbol 

as  

  xxfxfH ))(ln()(  

The solution for the maximum entropy system will be the same 

as in the discrete case. Many researchers focused their work in the 

continuous case to obtain the ME distribution. Zellner and Highfield 

(1988) derived the ME distribution with respect to high order moments 

constraints. Press (1996) presented a summary of some ME 

distributions. 

3. Generalized Maximum Entropy Stage 

Golan, Judge and Miller (1996) proposed the GME estimation 

procedure as an extension of the ME. The main idea behind the GME 

estimation procedure is to solve the underlying problem using the data 

information even if these information are limited, partial or incomplete 

known. Therefore, the optimization problem steps that are given in 

figure 1 should be extended to recover the unknown parameters when 

they are not in probability terms. This can be done by reparametrizing 

the unknown parameters and noises in terms of probabilities and then 

rewrite the model by using the new formulation. After adding these two 

steps, the ME algorithm can be applied. For example, consider the 

general linear model 

eXy    

where y is response variable of size N,   is unknown parameters, X is 

a predictor variables of size K*N and e is unobservable random errors 

with finite location and scale parameters. Given information about the 

predictors (X) and response (y) variables, the objective of GME 

procedure is to recover the unknown model coefficients (parameters) 

  and the disturbance term e. This can be done in four steps as shown 

in figure 2. 
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Figure 2: Generalized Maximum Entropy Estimation Procedure 

where 𝛽 = 𝑍𝑃; 𝑒 = 𝑉𝑊,   is the Kronecker product, T1 is a T-

dimensional vector. Then the optimal solution of this system will be of 

the following form:  

PZ ˆˆ   and WVe ˆˆ   

More details can be obtained from Golan, Judge and 

Miller(1996), Golan (2014) and Al-Nasser (2010). 
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