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Teaching Module 
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Abstract 

Portfolio managers and investors strive to achieve the best possible 

trade-off between risk and return, and one of the tools they use is 

constructing mean-variance efficient portfolios. Finance students 

learn about optimal portfolios and efficient frontiers, though it is 

difficult to replicate them unless they have access to sophisticated 

software. This paper develops a teaching module that uses 

Microsoft Excel® to create mean-variance portfolios and traces out 

the efficient frontier using real-world data. In the process, the 

students learn to determine optimal investment allocations in a 

portfolio, select the optimum investment portfolio given investor’s 

objectives and preferences and learn about factors that influence 

different asset allocations. For multiple assets (N>3), the paper uses 

Matrix algebra in Excel®. The paper enables students and investors 

to learn how to construct real-world mean-variance efficient 

portfolios using Excel®. 

Keywords: Optimal Portfolio, Efficient Frontier, Risk, Expected 

Return and Risk-free asset. 
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1. Introduction 

Finance theory has become increasingly mathematical, but there is a 

dearth of computational finance materials at the undergraduate level 

which is likely because undergraduate finance and economics tend to 

be taught in business schools or under social sciences and more 

mathematically oriented courses are in mathematics and natural 

science departments. In recent years we have seen an increase in 

academic programs that support computational finance but mostly at 

the graduate level (Roychoudhury, 2007). One of the first papers 

which laid the groundwork for mathematical theorization in finance 

was Portfolio Selection by Markowitz (1952). The paper introduced 

the Modern Portfolio Theory (MPT) and formulated the concept of 

optimal portfolios and the efficient frontier. This paper provides a 

teaching tool to create mean-variance portfolios and traces out the 

efficient frontier using real-world data and Microsoft Excel®. In the 

process, the students learn to determine optimal investment 

allocations in a portfolio, select the optimum investment portfolio 

given investor’s objectives and preferences and learn about factors 

that influence different asset allocations.  

The finance industry uses proprietary software that runs into 

thousands of dollars in annual license fees that estimate the efficient 

frontier and the optimal portfolio. However, Microsoft Excel® has 

developed into a powerful tool that can be used to model and do 

sophisticated calculations in finance. For example, see Wann (2015), 

Boudreaux et al. (2016), and Wann & Lamb (2016). Hess (2005) 

finds that "hands-on" use of spreadsheet modeling in class, improves 

understanding and retention of the concepts. Incorporating powerful 

Excel tools into finance teaching can help students understand the 

concepts of finance intuitively, and bridge the gap between financial 

theories and real-world applications (Zhang, 2014). Finance faculty at 

most leading business schools advocate the use of Excel to prepare 

students for the workforce. 

Investors and portfolio managers concentrate their efforts on 

achieving the best possible trade-off between risk and return. For 

portfolios constructed from a fixed set of assets, the risk/return profile 

varies with the portfolio composition. Portfolios that maximize the 

return, given the risk, or, conversely, minimize the risk for the given 

return, are called optimal portfolios. The set of optimal portfolios in 
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the risk/return plane is called the efficient frontier.  In this paper, to 

create optimal portfolios in Excel and to trace the efficient frontier, 

we use a dataset of US stocks. The stocks prices are one of the most 

widely available financial data in the United States. There are several 

good websites where students can download price information. Some 

of them are Yahoo! Finance, MSN Money, NASDAQ.com, and 

Bloomberg.com. In this paper, price information from Yahoo! 

Finance has been used. For the data and solutions used in this paper, 

refer to the Excel file (JQM_EF_Excel.xls) which is available for 

download at http://bit.ly/EFrontier. This paper is organized as 

follows; the next section is a review of concepts such as expected 

return, risk, and diversification. This is followed by the section 3 

where we construct the portfolio model for 2 risky assets, 3 risky 

assets and an ‘N’ number of risky assets. Section 4 implements the 

model in Excel and section 5 concludes. 

2. Overview 

2.1. Expected Return 

Stock price changes or returns are random variables as the future 

returns on a stock are uncertain and unpredictable. A stock can have 

significant ‘up’ and ‘down’ movement even within a small time-frame 

like a single day. Figure 1 shows how the stock price of Microsoft 

stock fluctuated in a single year. For finding an estimate of future 

returns on assets such as Microsoft stock, we need to estimate the 

expected value of the Microsoft stock returns. Ideally, we would try to 

come up with an expected value of the stock by associating the 

returns with a probability distribution (very much like the coin-toss 

example where the probability of getting ‘heads’ and ‘tails’ is 50% 

each).  

However, in reality, no model of finance is likely to claim that 

investors can find great bets “+$1 million with 99% probability” and 

“−$100 with 1% probability.” Such an expected return would be way 

out of line. In financial markets, no one knows the correct model of 

expected stock returns well enough to know if the stock market can 

set the price of the Microsoft stock to offer an expected rate of return 

on Microsoft of 7% or 12% a year. As it is difficult to estimate true 

expected returns historical return averages are used as proxies. In this 

module, we employ the most widely used measure: Expected return 
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on a stock is the mean return of its historical returns. For example, the 

expected mean monthly return of Microsoft would be simply  





N
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msftimsft r
N
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1
)(   

where msftir ,  is the historical monthly return for 
thi  month and 

N is the number of months over which the returns are averaged. 

The expected return of a portfolio, p , is the weighted 

average of the expected returns on the individual assets in the 

portfolio, with the weights being the percentage of the total portfolio 

invested in each asset. 
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where iprE )(  is the expected return on the individual 

stocks, is is the weight, and there are n  stocks in the portfolio.  

2.2. Risk 

Statistically, risk measures how dispersed are the outcomes from 

the center (mean or expected return). Standard deviation is the 

most common measure of portfolio risk. The higher the level of 

standard deviation, the more variability between the pay-offs or 

returns.  

Looking back at our example, we can deduce that the 

variance can be expressed as  
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for N observations  and the standard deviation is expressed 

as the square root of the variance 
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When we say something like “this investment is risky” we 

generally refer to the downside risk only. That is, to an investor, 

the relevant risk of investing in a portfolio is the chance that he 
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would end up with returns which are less than the expected returns. 

There is a subtle difference between this and how we measure risk 

statistically (by variance or standard deviation). When we measure 

risk statistically, we measure the variability or dispersion around 

the mean. We put equal weights to the variability of returns both 

above and below the mean. Though the portfolio expected return is 

simply the weighted average of the expected returns of the 

individual assets in the portfolio, the risky-ness (measured by the 

standard deviation, )p is not the weighted average of the 

individual assets’ standard deviations. The portfolio risk is 

typically smaller than the average of the standard deviations of the 

individual assets. 

2.3. Diversification 

Diversification is equivalent to not putting all eggs in one basket. It 

is akin to not putting all your money in one risky asset but 

allocating your money across a number of risky assets.
2
 A well-

diversified portfolio will significantly lower the downside risk 

without lowering your expected return (Roychoudhury, 2007). 

Take the coin-toss example. Suppose the return on $10,000 you 

have put in a risky stock depends on the flip of a coin. Heads, it 

quadruples in value (becomes $40,000); tails, you lose $10,000. 

The expected return is very good at 100%
3
. Unfortunately, the 

downside risk is terrible – there is a 50% chance that you would 

lose your $10,000. 

 As a rule, portfolio risk declines as the number of stocks in 

the portfolio increases
4
. Thus, careful diversification can create a 

portfolio that is less risky and earns more on average for the same 

degree of risk than any single company stock. 

                                                           
2
In this paper we are looking at stocks as the risky asset. In the real world, the 

investor will have other choices like investing in bonds, Bank CDs, real estate, 

commodities and derivatives. 
3
It is 000,20$0$%50000,40$%50  or 100% return on the initial 

$10,000 investment. 
4
In practice, investment managers and finance practitioners find that if you hold 

anywhere between 25 and 30 stocks you can capture most of the diversification 

benefits. Adding assets beyond a certain number (like 30) does not generate 

much incremental benefit as far as reducing portfolio risk is concerned. 
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3. The Model 

We know that it is essential to diversify, but it still does not tell 

you how much of each security you should purchase. How do you 

determine investment allocations in a portfolio? Where is the best 

investment portfolio given the investor’s objectives and 

preferences? What would influence different allocations? To 

answer these questions, we start with a modified version of the 

Markowitz’s (1952) portfolio theory model.  

We begin with the simplest example – one period, two 

assets, and, normally distributed returns. The model assumes that 

investors are risk-averse, meaning that if there are two assets that 

offer a same expected return, the investor will prefer the less risky 

asset. An investor will undertake increased risk only if 

compensated by higher expected returns. The model also assumes 

that the investor’s risk-reward preference can be explained entirely 

by expected return and volatility (measured by standard deviation 

of historical returns). A risk-free asset exists (in the form of US 

Treasury Bills), and it is possible to borrow and lend money at the 

risk-free rate. All stocks are perfectly divisible (e.g., it is possible 

to buy th1000/1  of a share) and there are no transaction costs or 

taxes. 

We use the following notations  

ir the return (sometimes called rate of  return) on asset i  

n  number of available assets 

fr the return on the risk-free asset 

i mean of the return on asset i 

i the standard deviation of the return on asset i 

2

i the variance of the return on asset i 

ij covariance between the returns on assets i and j  

ij  correlation between the returns on assets i and j 

is  the share of asset i in the portfolio 

 prr the (rate of) return of a portfolio 

 p the mean of the portfolio return 
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3.1. Two Risky Assets  

We assume that there are only 2 risky assets, A and B, available for 

consideration in an investment portfolio. The portfolio return is given 

by  

BBAA srsrr         (1) 

The portfolio shares need to add up to one:  

1 BA ss        (2) 

Taking expectations of (1):  

     BBAA rEsrEsrE       (3) 

yields the mean portfolio return 

BBAA ss         (4) 

Based on equation (4), portfolio variance is  

22222 2 BBBABAABAAp ssss      (5) 

which simplifies to: 

 

BABAAABAAAP ssss  ,

2222 )1(2)1(   (6) 

Combining equations (4) and (5), and using (2) to eliminate 

the portfolio shares, provides the feasible combinations of mean and 

standard deviation. The portfolio frontier is a plot of these feasible 

combinations of overall portfolio risk and returns.  

Combining equations (4), (5), and (2) yields the portfolio 

frontier for two risky assets: 

 2222

12
)()()(2)(

)(

1
BBBABAABB

AB

p 


 




        (7) 

The equation represents a hyperbola in mean-standard deviation 

space.  

3.2. Three Risky Assets 
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For a portfolio consisting of three risky assets A, B, and C, the return 

for the portfolio is simply 

CCBBAA sss   , and the portfolio risk is given as 

     CBCBCACABABACCBBAAP rrCovssrrCovssrrCovsssss ,2,2,22222222     

        (9) 

Please refer to Appendix A1 for a detailed derivation. 

3.3. N Risky Assets 

As discussed in the background section, as we keep on adding more 

and riskier assets, the portfolio risk is expected to go down, but at the 

same time, the math also tends to become messier. We resort to 

matrix algebra which can represent a lot of data by sorting them into 

groups or cohorts which are called rectangular arrays. A brief 

refresher of matrix algebra is provided in the mathematical appendix.  

We assume here that investors may invest in a total of n risky 

assets and that no risk-free asset exists. Short sales are not restricted. 

The portfolio frontier, in this case, was rigorously derived by Merton 

(1972)
5
. 

Mathematically the portfolio frontier can be found by 

minimizing portfolio variance subject to a given expected return. This 

creates an envelope portfolio (Benninga, 2014). The dual of this 

decision problem does not provide the same solution: Maximizing the 

expected return subject to a given portfolio variance only produces 

the upper half of the portfolio frontier. The lower half is dominated as 

a higher expected return can be found for any possible variance. The 

upper half of the portfolio frontier obtained in this manner is called 

the efficient frontier for apparent reasons. The envelope is the set of 

all envelope portfolios, and the efficient frontier is the set of all 

efficient portfolios (Black, 1972). Empirically, if the assumptions 

leading to mean-variance analysis are justified, we expect that no 

individual’s complete portfolio lies below the efficient frontier. 

Consider the following variable definitions: 

                                                           
5
 The model used in this paper is a simpler version to suit the level of advanced 

undergraduate students. 
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 ij , represents the n x n variance-covariance matrix of the n 

asset returns, where 

  is a 1 x n column vector of the expected returns, i  . 

s   represents a 1 x n column vector of the portfolio shares or weights, 

is . 

1 represents a 1 x n column vector of 1's 

1 represents the inverse of a matrix   

The portfolio frontier is found by minimizing portfolio variance 

subject to a given portfolio mean: 

Minimize with respect to s:    

ssT 
2

1
        (10) 

Subject to the constraints 

p

T s          (11) 

11 sT        (12) 

Thus the portfolio variance is minimized subject to a given 

expected portfolio return p and given that all portfolio shares add up 

to 1. 

Using the Lagrangian
6
 method with multipliers   and   for 

constraints (11) and (12), respectively, produces the following first-

order condition: 

01  TTTs        (13) 

Solving for the portfolio weights gives us: 

11* 1   TTTs      (14) 

                                                           
6
For students new to Lagrangian multipliers it might be a good idea to look at an 

undergraduate Finance and Economics book like Alpha C. Chiang’s 

“Fundamental Methods of Mathematical Economics.” A brief overview on 

Lagrangian multipliers is written by Steuard Jensen and is available at 

http://www.slimy.com/~steuard/teaching/tutorials/Lagrange.html 
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As,   is positive definite
7
 we can conclude that 

*Ts does 

minimize the variance and that the solution obtained here for the 

portfolio shares is unique. In this partial-equilibrium framework, 

nothing guarantees that all portfolio shares are positive or below one.  

Post-multiplying equation (13) by s and using constraints (11) 

and (12) gives: 

  pp

2       (15) 

Post-multiplying equation (18) by  : and separately by 1 

yields the following two equations: 

 11 1   TT

p     (16) 

1111 11   TT       (17) 

Define: 

 1 TA , 11 1 TB , 11  TC , and 2CABD   

        (18) 

Note that A, B, C, and D are scalars that depend only on the 

constant parameters of the set of available assets. It is now 

straightforward to solve for   and   from equations (16) and (17): 

 
D

CB p 



       (19) 

 
D

CA p



       (20) 

Plugging (19) and (20) into equation (19) yields an explicit expression 

of the portfolio frontier: 

 
D

ACB pp

p







22

2      (21) 

The portfolio frontier is a hyperbola in mean-standard 

deviation space as in the case of 2 risky assets. The reason is intuitive: 

                                                           
7
For the variance-covariance matrix to have an inverse, it requires that no two 

assets are perfect substitutes; so that the matrix is not singular.  
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Any two points on the frontier can be thought of as mutual funds that 

are individual assets. Taking different combinations of these two 

assets must trace out a hyperbola based on case with 2 risky assets, 

but there is no way that this hyperbola can be different from the n-

asset frontier as it can, at no point, lie to the left of the n-asset frontier 

(or the frontier wouldn’t be a true frontier). Thus, once we understand 

the 2 risky assets case, we can deduce logically that the n-asset 

frontier must be a hyperbola, as well (Roychoudhury, 2007). Based 

on the above formula it is now easy to find the minimum variance 

portfolio of risky assets. Differentiating equation (21) with respect 

to
P  and setting it equal to zero yields BCP /  so that we 

obtain Bp /12   (after using the definition of D in (22)). 

4. Solution Methodology and Implementation 

Given a potential set of assets, the efficient frontier can be created by 

portfolio optimization. Portfolio optimization involves a mathematical 

procedure called quadratic programming in which two objectives are 

considered: Maximizing return and minimizing risk. It is called a 

Quadratic Programming Problem (QPP) as the objective function 

consists of second-degree terms. The two objectives are considered: 

(i) Minimize risk given a specific return, or (ii) maximize return for a 

given level of risk. The QPP for both objectives is generally subjected 

to the following constraints: 

a) The weight of funds invested in different assets must add to unity; 

b) There is no short sale provision. 

The constraints imposed on the problem are neither 

exhaustive nor irrevocable. There might be a maximum limit on 

which an investor can purchase one stock. Similarly, we can modify 

the short sales constraint to allow short selling. 

Portfolios on the mean-standard deviation (or variance) 

efficient frontier are found by searching for the portfolio with the least 

variance given some minimum return. Repeating this procedure for 

many return levels generates the efficient frontier. 

The QPP can be solved using constrained optimization 

techniques involving calculus or by computational algorithms 

applicable to non-linear programming problems. Of the two 
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approaches, the non-linear programming is more versatile as it is 

comfortable handling both equality and inequality constraints. 

We start with a simple Excel exercise in tracing a portfolio 

frontier and then move to the constrained optimization techniques. 

Consider two possible investments, say, JP Morgan Chase 

(JPM) and Oracle Corporation (ORCL). We have about six years or 

seventy-two months’ worth of data
8
 obtained from Yahoo! Finance. 

The returns are arranged in ascending order of dates shown in figure 

2. 

It is a good idea to start by defining your inputs into named 

Arrays. With Arrays that you do not have to select the entire range 

every-time, you want to calculate a formula using JPM. For the mean 

return, you can write =AVERAGE(JPM), for standard deviation
9
 we 

can write it as =STDEVP(JPM), and for a variance, =VARP(JPM) 

and so on.  

Our objective is to trace the portfolio frontier in mean-

standard deviation space and identify the efficient frontier and the 

minimum variance portfolio. For simplicity, assume that both stocks 

can only have positive weights and there is no short-selling. 

Step 1: Using AVERAGE(), STDEVP() and VARP(), find the mean, 

standard deviations and the variance of JPM and ORCL. Also find the 

correlation coefficient and the covariance between the two assets, 

JPM and ORCL using the CORREL() and COVAR() functions. 

Step 2: Start with any portfolio weights; say your entire money is 

invested in ORCL. So, the weight of ORCL is 100%, and JPM is 0% 

(remember the weights must add up to 1).  

Step 3: Use equations (4) and (5) from the previous section to 

compute the portfolio means and portfolio variance. To calculate 

portfolio standard deviation, simply take the square root of the 

                                                           
8
There is no single consensus on how far back you should go to estimate the 

expected returns and volatility, 5 to 6 years or 60 to 72 months is popular in 

empirical finance because that is the time frame used to calculate another 

important variable called the “beta” which is measure ‘s’, a measure of a stock's 

volatility in relation to the entire market. 
9
Note that we use STDVEP instead of STDEV. The excel function STDEVP 

refers to the population standard deviation whereas STDEV measures the 

sample standard deviation. Similarly we use VARP instead of VAR. 
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portfolio variance. These portfolio values correspond to the portfolio 

weights of 0% in JPM is 100% in ORCL.  

Step 4: To trace the portfolio frontier we vary the weights of one of 

the assets, say JPM (the weight of ORCL will automatically vary as 

their sum has to add up to 1). In our example, we create a column 

starting from cell B17 (see the screen-shot below) and put weights of 

JPM in increments of 5% (you can vary weights in smaller or larger 

increments). Cell C17 corresponds to the portfolio variance formula; 

Cell D17 is the square root (=SQRT) of the variance in cell C17. Cell 

E17 gives the portfolio mean using the formula (4) as before. We 

copy the columns C17:E17 till the row corresponding to JPM’s 

weight of 100%. The screen-shot in figure 3 shows the columns and 

the formulas used. 

Step 5: We now have the data to trace out the frontier. Go to the 

Chart Wizard or “Insert-Chart.” Select the XY (scatter) and then the 

second option on the right which is “Data points connected by 

smoothed lines.” Select columns corresponding to the Portfolio Risk 

(standard deviation) and portfolio return as shown in the screen-shot 

in figure 3. To get a smooth-looking regular shaped frontier, you may 

have to vary the units of the X and Y axis under chart options.  

We have now successfully created a real-world portfolio 

frontier with two risky assets, JPM and ORCL. From figure 3, we can 

see that the efficient frontier is traced by the locus of points from “A” 

to “B.” Any portfolio like “C” which lies below the minimum 

variance portfolio in the picture (or to the south of the minimum 

variance portfolio) is dominated by the minimum variance portfolio 

and all portfolios which lie to the northeast of it.  

How would you interpret the finding? No risk-averse investor 

should buy portfolio in the region below A or anywhere else, except 

for points on the efficient frontier traced from A to C. Depending on 

the risk-taking ability the individual investor can choose between 

portfolio allocation A (more risk-averse investor) to allocation B (less 

risk-averse investor). Remember, you can only expect a higher return 

on the efficient frontier if you are willing to take more risk.  

4.1. Finding the Minimum Variance Portfolio (More Accurately) 

To find the exact location of the minimum variance portfolio, we 

solve the QPP using constrained optimization techniques (we can 



Creating Optimal Portfolio and the Efficient Frontier                                     | 117 

Journal of Quantitative Methods                                              Volume 2(2): 2018 

very well do it after the pain we went through deriving all the 

formulas). We start with the non-linear programming method using 

solver and then move to the calculus approach. 

4.1.1. Minimum Variance Portfolio using Solver 

Excel solver is a powerful tool for optimization
10

 and produces 

targeted results for your models (the technical jargon is “calibrate 

your model”). 
11

 Microsoft solver can be added by selecting “Tools-

Add-ins” and choosing the “Solver Add-in.”  

By using the solver, we can calculate the minimum variance 

portfolio. The screen-shot in figure 4 shows the solver dialog box. In 

this box, we have asked the solver to minimize the variance in cell 

B12, by changing the weight of JPM (cell B17) in the portfolio. In 

order to ensure that the weights of JPM and ORCL are positive we 

put a non-negative constraint by ensuring the weight of JPM and 

ORCL’s weight are greater than equal to zero. The relation formula 1-

B7 in cell C17 corresponding to ORCL’s weight ensures that the sum 

of the two weights does not exceed 1.   

Clicking on “Solve” in the solver dialog box gives (see 

screen-shot below), the minimum variance portfolio with 64.9% 

invested in JPM and 35.1% in Microsoft. The minimum Variance 

portfolio corresponding to 7.01% risk (standard deviation) and 0.81% 

returns matches our result obtained previously in “Tracing a Portfolio 

Frontier.” 

4.1.2. Minimum Variance Portfolio using Calculus Method 

Recall the section where we derived the minimum variance portfolio 

for 2 risky assets (all those derivations coming to some use now). 

Equation (8) gave us the optimal portfolio weight as 

 
 BABA
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A
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
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10

Solver tool uses the Generalized Reduced Gradient (GRG2) nonlinear 

optimization code developed by Leon Lasdon, University of Texas at Austin, 

and Allan Waren, Cleveland State University. 
11

A nice book on using excel tools like Solver and Goal-seek and its application 

in Finance is by Simon Benninga, “Principles of Finance with Excel”. 
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We plug the values of variance and covariances in cell B26 to get the 

optimal weight of JPM. Implementing the formula in Excel gives the 

same answer as that given by solver (see figure 5). 

4.2. Effect of Change in the Correlation Co-efficient in a Portfolio 

Stock A and stock B are two risky assets which have the following 

characteristics. Stock A has an expected return of 3% but a standard 

deviation of 25%, while for stock B, the respective numbers are 2% 

and 15%. The correlation coefficient between the two assets is 0.54. 

Let us see what happens if the correlation coefficient changes to two 

extremes; perfectly negatively correlated and perfectly positively 

correlated.  

We trace the portfolio frontier using the same methodology as 

in “Tracing a Portfolio Frontier” section. We do it for three different 

values of the correlation coefficient
AB . For 

AB  = 0.54; 1AB  

and for 
AB =+1 as shown in figure 6. 

  There is a trick to superimpose all the three graphs in the same 

diagram. Select any graph, copy it and paste it over the other graph, it 

should clearly superimpose if the size of the graph and the axis are 

identical. Do the same for the third graph, and we have a graph very 

similar to figure 3 in the Model section. The screen-shot below (figure 

6) of our example is shown below. We can observe that the best 

diversification can be obtained for 1AB . 

For a detailed derivation and explanation of the effect of a 

change in correlations, refer to Appendix A2. 

4.3. Minimum Variance Portfolio for Three Risky Assets 

Let us pick a third asset, Haliburton (HAL), which would give us a 

three asset portfolio with ORCL and JPM. The primary objective is to 

find the minimum variance portfolio and the weights of the three 

assets which correspond to the minimum variance portfolio 

4.4. Solving the QPP: Minimizing Portfolio Risk Subjected to the 

Constraints 

 The weight of funds invested in different assets must add to unity; 

 There is no short sale provision. 
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We specify the first constraint by ensuring that the weight of 

an asset is one minus the sum of the weights of JPM and HAL. To 

incorporate the second constraint, we specify that the weights are 

non-negative in the solver dialog box as shown in figure 7. We set the 

target cell as B12 which corresponds to the portfolio variance and 

allow the solver to change the portfolio weights (Cells B17 and C17) 

to solve for the minimum variance portfolio. 

The results (see figure 7) are reflected in cells B11 for 

expected return on the portfolio, cells B12 and B13 for minimum 

variance and the minimum standard deviation. The new portfolio 

weights are displayed in cells B17:D17. The minimum variance 

portfolio is characterized by an expected return of 0.90% and risk of 

6.84% with portfolio weights of 55.8% for JPM, 30.92% for ORCL 

and 13.28% for HAL. 

4.4.1. Using Matrix Algebra 

Formulas become lengthy and complicated as more assets are added 

to the portfolio. Excel has functions which allow us to do basic matrix 

operations like addition, subtraction, matrix multiplication, inverse, 

and transpose. We already started the section by naming the data 

inputs into arrays, which is the basic building block of matrix algebra.  

We name the following matrices as defined in the model section 

under “N Risky Assets.” We can redo the efficient frontier for 3 risky 

assets and recreate the whole model using Matrix algebra. The results 

are available in figure 8. 

4.4.2. 5 Risky Assets 

Refer to the file “Portfolio_optimization_Matrix.xls” for complete 

solution and details 

  is an 1 x 5 column vector of mean returns of 5 stocks. The array is 

named “mu.”  

s  represents a 1 x 5  column vector of the portfolio shares , the array 

is named “s.” 

 ij , represents the 5 x 5 variance-covariance matrix of the n 

asset returns, the array is named “Sigma.”  

1 represents a 1 x 5 column vector of 1's, named “i.” 
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1 represent the inverse of a matrix  , and can be represented by 

Excel’s  matrix inverse function  “MINVERSE(Sigma),” where 

“Sigma” is the named variance-covariance matrix. 

For matrix multiplication we use “MMULT(),” and for 

transposing matrices, we use the “TRANSPOSE()” function. For 

details on matrix functions in Excel refer to Excel’s Help menu. 

When you enter a matrix algebra formula in Excel, remember to press 

CTRL + SHIFT+ ENTER together to execute the formula. Simply 

pressing ENTER would give an error. 

Rewriting equations (10), (11) and (12) we have the 

corresponding equations (with *) in Excel notation the QPP is given 

as: 

 Minimize with respect to s:           

  ssT 
2

1
 =MMULT(TRANSPOSE(s),MMULT(Sigma,s))  (10*) 

Subject to the constraints 

p

T s    {=MMULT(TRANSPOSE(mu),s)}   (11*)                                          

11 sT   {=MMULT(TRANSPOSE(I), s)}    (12*) 

We set the target cell in the Solver dialog box equal to 

equation (10*) and specify the constraints as in equations (11*) and 

(12*) in the “Subject to Constraints” box. Select the range of the 

portfolio weights of the 5 risky assets (F4:F8) as the cells that would 

be changed by Solver to reach the optimization solution.  

The solver solution is shown in figure 9. The optimal portfolio 

risk (as measured by standard deviation) is 4.79%, and the 

corresponding portfolio expected monthly return is 0.6%. The 

weights in the optimal portfolio are also shown in cells F4 to F8. 

4.4.3. Using Calculus Method 

Refer to the case of “N Risky Assets” in the model section. We start 

by re-writing the formulas defined in the model section under “N 

Risky Assets” in Excel form. We continue with the same worksheet 

in “Portfolio_optimization_Matrix.xls.” 

 1 TA  
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as{=MMULT(MMULT(TRANSPOSE(mu),MINVERSE(Sigma)),m

u) 

11 1 TB    

as {=MMULT(MMULT(TRANSPOSE(I),MINVERSE(Sigma)),i)} 
12 11  TC  

as {=MMULT(MMULT(TRANSPOSE(I),MINVERSE(Sigma)),mu,  

and, 2CABD    

as   =A*B-(C.^2)             

For the return on the minimum risk portfolio we 

take BCP / as =C./B in Excel notation, and for minimum 

standard deviation, we take the square-root of  

Bp /12   in Excel notation as =SQRT(1/B). Figure 10 

shows the solution using the calculus method, and it matches the 

solution by the solver method.  

For the equation of the portfolio frontier in the mean-standard 

deviation space, we take the square-root of equation (21) 

 
D

ACB pp

p







22

2            (21)  

 As, =(((B*(E39)^2-(2*C.*(E39))+A)/D)^(1/2)) in Excel notation, 

where the cell E39 corresponds to a value of the portfolio expected 

return. 

  We can trace the portfolio frontier by selecting different 

values of expected return and calculating the corresponding 

standard deviation using the above formula. Note: In solving using 

the calculus method we do not consider the assumption anymore 

that there are no short sale constraints. Figure 10 also shows the 

graph of the frontier. Refer to the worksheet 

“Portfolio_optimization_Matrix.xls” for more description on how 

to select different values portfolio expected returns. 

The line tracing the points from the minimum variance 

portfolio A to B is the efficient frontier. A risk-averse investor will 

never hold a portfolio which is to the southeast of point A. Any point 

to the southeast of A such as C would have a corresponding point like 

                                                           
12

Excel does not allow using “C” to name arrays. We use “C.” in place of “C”. 
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D which has a higher expected return than C with the same portfolio 

risk. Clearly, point D will dominate point C. The optimal portfolio is 

the portfolio allocation (or points on the efficient frontier) 

corresponding to the investor’s risk preference. More risk-averse 

investors would choose points on the efficient frontier that is closer to 

point A. Similarly, an investor who is less risk-averse or can handle 

more risk would choose a portfolio closer to point B. 

5. Conclusion 

Creating optimal portfolios and tracing the efficient frontier is a skill 

required for a student in finance. Microsoft Excel® has developed into 

a powerful tool that can be used to model and do sophisticated 

calculations in finance. This paper is a teaching module that uses 

Microsoft Excel® to create mean-variance portfolios and traces out the 

efficient frontier using real-world data. This paper could be used as an 

integrated part of a computational finance course or a stand-alone 

component within the typical investments or security analysis and 

portfolio management course in finance. If the paper suggestions are 

followed, the students will be able to build a real-world investment 

portfolio of risky assets using modern portfolio theory techniques. The 

students should also be equipped to make modifications to the portfolio 

if some real-world variable changes or if some assumptions of the 

model are relaxed. The investors could also use this modeling 

framework to come up with optimal portfolios from a fixed set of risky 

assets. 
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FIGURES 

 

 

Figure 1: Microsoft Stock Price Movement from Jan 1, 2017, to 

Dec 20, 2017. 
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Figure 2: Time-series Returns of 2 Risky Assets, JP Morgan 

Chase (JPM) and Oracle (ORCL). Data is on monthly returns 

from 2001-2007. The data is available from the “Master Data” 

tab in JQM_EF_Excel.xls and available for download at 

http://bit.ly/EFrontier. 

http://bit.ly/EFrontier


Creating Optimal Portfolio and the Efficient Frontier                                     | 126 

Journal of Quantitative Methods                                              Volume 2(2): 2018 

 

Figure 3: Solving and Graphing for the Efficient Frontier for 2 

Risky Assets, JP Morgan Chase (JPM) and Oracle (ORCL). Data 

is on monthly returns from 2001-2007. The solution is available 

from the “Tracing Portfolio Frontier” tab in JQM_EF_Excel.xls 

and available for download at http://bit.ly/EFrontier 

http://bit.ly/EFrontier
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Figure 4: Using Solver tool in Microsoft Excel® to Find the 

Minimum Variance Portfolio for 2 Risky Assets, JP Morgan 

Chase (JPM) and Oracle (ORCL). Data is on monthly returns 

from 2001-2007. The solution is available from the “2 Assets - 

Solver” tab in JQM_EF_Excel.xls and available for download at 

http://bit.ly/EFrontier    



Creating Optimal Portfolio and the Efficient Frontier                                     | 128 

Journal of Quantitative Methods                                              Volume 2(2): 2018 

 

Figure 5: Using the Calculus Method to Find the Minimum 

Variance Portfolio for 2 Risky Assets, JP Morgan Chase (JPM) 

and Oracle (ORCL). The figure also shows the solver solution 

from Figure 5. Data is on monthly returns from 2001-2007. The 

solution is available from the “2 Assets - Solver” tab in 

JQM_EF_Excel.xls and available for download at 

http://bit.ly/EFrontier 

http://bit.ly/EFrontier
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Figure 6: Effect of Correlation Co-efficient on Portfolio Frontier 

for 2 Risky Assets. The solution is available from the 

“CORRELATIONS” tab in JQM_EF_Excel.xls and available for 

download at http://bit.ly/EFrontier 

http://bit.ly/EFrontier
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Figure 7: Minimum Variance Portfolio for 3 Risky Assets using 

Solver. The 3 risky assets are JP Morgan Chase (JPM) , Oracle 

(ORCL) and Haliburton (HAL).  Data is on monthly returns 

from 2001-2007. The solution is available from the “Minimum 

Variance – 3 assets” tab in JQM_EF_Excel.xls and available for 

download at http://bit.ly/EFrontier 

 

http://bit.ly/EFrontier
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Figure 8: Minimum Variance Portfolio for 3 Risky Assets using 

Matrix Algebra and Solver. The 3 risky assets are JP Morgan 

Chase (JPM), Oracle (ORCL) and Haliburton (HAL).  Data is on 

monthly returns from 2001-2007. The solution is available from 

the “Matrix Algebra – 3 assets” tab in JQM_EF_Excel.xls and 

available for download at http://bit.ly/EFrontier 

 

Figure 9: Minimum Variance portfolio for 5 risky assets using 

Matrix Algebra and Solver.  Data is on monthly returns from 

2001-2007 in JQM_EF_Excel.xls and available for download at 

http://bit.ly/EFrontier 

http://bit.ly/EFrontier
http://bit.ly/EFrontier
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Figure 10: Efficient Frontier for 5 risky Assets using the Calculus 

Method.  Data is on monthly returns from 2001-2007 in 

JQM_EF_Excel.xls and is available for download at 

http://bit.ly/EFrontier 

 

 

http://bit.ly/EFrontier
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APPENDIX A 

A1. Derivation of portfolio Expected return and variance for a 

portfolio consisting of three risky assets A, B and C 

The return for the portfolio is simply 

CCBBAA rsrsrsr   

Taking expectations on both sides of the above equation we get 

       CCBBAA rEsrEsrEsrE   

This can be re-written as  

CCBBAA sss    

The notations have their usual significance.  

The variance of the portfolio can be written as, 

)()( CCBBAA rsrsrsVarrVar    

Let X = 
BBAA rsrs  ; then we can re-write the above equation as

13
 

)(rVar  

),( CC rsXVar = )(),(2)( CCCC rsVarrsXCovXVar  (A1.1) 

Take the first term on the left-hand side, and we get 

)(),(2)()()( BBBBAAAABBAA rsVarrsrsCovrsVarrsrsVarXVar 

= )(),(2)( 22

BBBABAAA rVarsrrCovssrVars               (A1.2) 

                        

Now, take the second term on the right-hand side of (A1.1) 

   ),(2),(2 CCBBAACC rsrsrsCovrsXCov                                  

Using  the property of covariance
14

, we can expand the right-hand 

side of the above expression as  

    ),(2),(2 CBCBCACA rrCovssrrCovss     (A1.3)                      

similarly we get the third term of (A1.1) as  

                                                           
13

 For any X and Y, )(),(2)()( YVarYXCovXVarYXVar   

14
 ),(),(),( 2121 YXCovbYXCovaYbXaXCov   
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)()( 2

CCCC rVarsrsVar       (A1.4) 

Let )(2

AA rVar , )(2

BB rVar and )(2

CC rVar . 

Substituting the values of  (A1.2), (A1.3) and (A1.4) in (A1.1) we 

have the portfolio variance for three risky assets  

     CBCBCACABABACCBBAAP rrCovssrrCovssrrCovsssss ,2,2,22222222  

 

A2. Effect of the Correlation Coefficient on the shape of the 

portfolio frontier 
The shape of the portfolio frontier for two risky assets, A and B, 

depends on the degree of correlation between the two assets. The 

correlation between the risky assets is a crucial aspect of any portfolio 

decision, so to get an idea of the general shapes of the portfolio 

frontier that are possible, we explicitly consider three extreme 

assumptions about the correlation between the returns of assets A and 

B. The corresponding figure for reference is A2.1 at the end of 

appendix A2. (For a more detailed description see Roychoudhury, 

2007 and Benninga, 2014) 

1         (i)    

Here , the assets are perfectly correlated. Equation (5) now simplifies 

to:  

    BABABBAAp ssss  222222      

   BBAAp ss     (A2.1)     

Figure A2.1 depicts that the portfolio frontier becomes a 

straight line sloping up from the point where 0As  to the point 

where 1As . The dotted lines indicate the opportunities again when 

short sales are permitted. When the returns on the risky assets are 

perfectly correlated, no diversification benefits occur and combining 

the assets will just lead to a linear combination between the extreme 

positions of putting the whole portfolio in either of the assets.  

1      (ii)   

The assets are perfectly negatively correlated. Equation (5) 

becomes:   

BABABBAAp ssss  222222   
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BBAAp ss     (A2.2)                            

 Note that, strictly speaking, the absolute value should also be 

taken in equation (A2.1) if short sales are allowed. Diversification 

benefits are maximal due to the negative correlation between the asset 

returns.  

0  (iii) 

 The assets are uncorrelated. One may think that this implies 

that diversification is not possible; in fact, the benefits of 

diversification are quite clear in this case. It is one of the basic 

insights necessary to understand portfolio choice. Even though the 

middle term in equation (5) drops out due to this assumption, the 

analysis, in this case, is substantially more complex than in the 

previous two cases. Equation (5) becomes:  

 2222

BBAAp ss    (A2.3)                            

Consider the mean/standard deviation tradeoff in this case 

derived from equations (4) and (A2.3). The slope of the frontier can 

be written as: 

pBBAA

BA

A

A

p ssdsd

dsd

d

d













/)(/

/
22 


   (A2.4)                 

If we assume that: 
BA   and 

BA   , the sign of the 

slope in the above equation depends on the denominator. It is easy to 

see in figure A2.1 that at some point the slope is vertical. The 

portfolio that produces this point is called the minimum variance 

portfolio. Further, at the fully undiversified point where s1 = 0, the 

slope must be negative. Thus, starting from this undiversified point; 

more diversification is beneficial for every investor with mean-

variance preferences: Expected return rises while standard deviation 

falls.  

It is clear that the portfolio frontier in case (iii) lies between 

the frontiers of cases (i) and (ii). It can be shown that this is true for 

the general case as well. For general correlation between assets 1 and 
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2, it is also true that the portfolio frontier has the same hyperbolic 

shape as in case (iii).  

 

Figure A2.1: Portfolio Frontiers for 2 Risky Assets, A and B. The 

shape of the portfolio frontier depends on the value of the 

correlation coefficient between the two assets, A and B. 


