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Gaussian Distribution under Noninformative Priors  
Nida Khan1 

Muhammad Aslam2 
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Abstract 

Bayesian estimation for location parameter of the inverse Gaussian 

distribution is presented in this paper. Noninformative priors 

(Uniform and Jeffreys) are assumed to be the prior distributions for 

the location parameter as the shape parameter of the distribution is 

considered to be known. Four loss functions: Squared error, 

Trigonometric, Squared logarithmic and Linex are used for 

estimation. Bayes risks are obtained to find the best Bayes estimator 

through simulation study and real life data. 

Keywords:  Bayesian estimation, noninformative prior, Jeffreys 

prior, loss function, Bayes estimator, Bayes risk, simulation study. 

AMS Classification Code: 62F15 

1. Introduction 

A lot of work has been done on the estimation of the parameters of the 

inverse Gaussian distribution. There are many applications of the 

inverse Gaussian distribution other than mathematical statistics. It is 

used in engineering to make quantitative analysis and to describe 

various phenomena. 

Lindley (1980) suggested the ratio of two integrals which was 

based on the asymptotic approximation. Sinha (1986) using the diffuse 

prior which was focused on the re-parameterized and derived the 

marginal posteriors and the highest–posterior-density of parameters 

based on the Bayesian inferences. Ismail and Auda (2006) said that the 
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inverse Gaussian distribution is a monotonic function, it first increases 

then decreases. They used Gibbs sampler and from the Gibbs sampler 

they found the posterior estimates. Lemeshko, Akushkina, K. A., 

Nikulin, Saaidia, & Saaidia (2010) have discussed different quality 

adjustment tests for the family of inverse Gaussian distributions.   

Murphy (2007) explained the conjugate prior for the inverse 

Gaussian distribution. He used different conjugate priors for the inverse 

Gaussian distribution. Meintanis (2008) presented an article in which 

he has given goodness of fit test for the family of symmetric normal 

variance of inverse Gaussian distribution is constructed. Ma, Liu and 

Ahmed (2013) notes the properties of Bayes shrinkage estimator and its 

uses for the dispersion of inverse Gaussian model. He considered the 

random sample of size n which is drown from inverse Gaussian 

distribution and the unbiased estimates of its parameter have found.  

Aminzadah (2011) has used two methods of approximation for the 

renewal process of inverse Gaussian distribution renewal process.  

Stogiannis and Croni (2012) present that the inverse Gaussian 

distribution is often used for modeling. But he used the tests for 

outliers’ parameter of inverse Gaussian distribution in which the shape 

parameter µ following F-statistic distribution that turned into normal 

approximations for unequal samples. Pandey and Rao (2010) have 

given the Bayesian estimation of the parameter of inverse Gaussain 

distribution using Morkov chain Monte Carlo Methods. Feroze (2012) 

has given Bayesian analysis to the scale parameters of inverse Gaussian 

distribution. More details can be seen in Aminzadeh (2011), and Khan 

(2014). 

Model and Likelihood Function 

A random variable x is said to possess an inverse Gaussian distribution 

if its p.d.f has the following form            
2
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Let nxxxx ,...,, 21
 
be a random sample taken from inverse Gaussian 

distribution with unknown location parameter  and known shape 

parameter  then the likelihood function is: 
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2. Bayes Estimators and Bayes Risks under Different Loss 

Functions 

This section contains Bayes estimators (BEs) and Bayes risks (BRs) 

under different loss functions. Four loss functions are used which are 

defined below 

The Squared Error Loss Function (SELF) 

The SELF is defined as: 

2

1 1( , ) ( )L L         

where   is the Bayes estimator of parameter . 

Now the BE is obtained after minimizing the expectation (with respect 

to posterior distribution) of this loss function. 

( | )E x                                       

And the Bayes  risk is obtained as 

 | 1( ) ( , ) ( | )xE L Var x      
             

 The Trignometric loss function is given as: 
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where   is the estimator of parameter . 

Now the BE is obtained after minimizing the expectation (with respect 

to posterior distribution) of this loss function. 

 

                                                              

 

 

And the Bayes posterior risk is obtained as: 
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 The Sequared Logarithmic loss function is given as: 
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where  is the estimator of parameter . 
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| (log )xE
e  

                                                                                  

And, the Bayes risk is obtained as  

 2 2

| |( ) (log ) (log )x xE E      
                                    

 

 The Linex loss function is defined as : 
( )

4 4( , ) ( ) 1, 0tL L e t t    
                                       

where   is the estimator of parameter . 

Now the BE is obtained after minimizing the expectation (with respect 

to posterior distribution) of this loss function. 
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And the Bayes posterior risk is obtained as: 
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3.  Bayesian Analysis Under Uniform Prior: 

The non-informative Uniform prior (UP) of parameter   is defined as: 

( ) 1,0p                                   (3) 

The posterior distribution of parameter  for the given data:  

nxxxx ,...,, 21  using (2) and (3) is 
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which is not in closed form, so we solve it numerically. 

Expressions for BEs and BRs  under Different LFs 
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4. Bayesian Analysis under Jeffreys Prior  

The Jeffreys prior (JP) for the parameter  is given below: 
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 Expressions For BEs and PRs Under Different LFs 
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Posterior Predictive Distribution 

The posterior predictive distribution is derived using informative and 

noninformative priors. Let 1nY X   be the future random variable 

given the sample observation nxxxx ,...,, 21  from inverse Gaussian 

distribution with unknown parameter . Posterior predictive 

distribution under noninformative priors also has no closed form so we 

also solve it numerically. 
2

2

( )

2

3
( | ) ,0 ,0 ,0

2

y

yp y x e y
y





 






                        

The posterior predictive under non informative prior is: 
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where 2k  is defined in (6). 

5. Simulation Study 

Simulation has many properties that whether the data are discrete or 

continuous. When the analytic solution of the problems may be 

difficult or impossible, simulation can provide an effective way to 

handle. So by taking different values of parameter and fixing the 

values of  3,5,8   along different sample sizes BE s and BRs are 

obtained. This section presents simulation study of Bayes estimators 

and Bayes risks. It is clear from the above results that by increasing 

sample size the Bayes estimator approaches to its true value of 

parameter. For small sample size, the estimators are underestimated 

and thus by increasing sample size more accuracy and precision 

obtained due to decreasing the BRs. By increasing the value of the 

shape parameter, risk decreases for all loss functions. The LINEX loss 

function (LLF) is recommended for further use of estimation as it has 

minimum risk. 

By comparing the priors which we have used, it is clear that the 

JP gives the smallest risk for all loss functions. 
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6. Bayes Estimates and Bayes Risks for Data 

Chhikara and Folks (1974) analyzed the maintenance data which 

represents active repair times (in hours) for an airborne communication 

transceiver, 46 observations are given as follows: 

Table 4: Repair Times (in hours) of 46 Transceivers 
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Table 5: BEs and BRs under different LFs using Real Data Set 

Priors  SELF TLF SLLF LLF 

    

         

UP 

  3.96173 3.96175 3.95851 3.89052 

( )   0.64813 0.00003 0.03468 0.00003 

   

JP 
  3.76580 3.76581 3.70893 3.76344 

( )   0.47233 0.00002 0.02942 0.00002 

The results obtained from real data set conform the results 

of simulation study. Thus it is clear that Jeffreys prior is suitable 

prior for location parameter as BE has minimum risk and the BE 

under LLF is the best estimator as it has minimum risk. 

7. Conclusions 

In this study, loss functions: Squared, Trignometric, Squared 

Logarithmic, Linex are used for the estimation of location 

parameter of the inverse Gaussian distribution. Non-informative 

priors are assumed for the location parameter. Linex loss function 

is recommended for estimation of location parameter as it has 

minimum risk. We observed that risk depends on sample size, as 

sample size increases, risk decreases. Further, the Jeffreys prior is 

suitable prior for location parameter as BE has minimum risk. 
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